
Incremental Parallelization Using Navigational Programming: A Case Study

Lei Pan, Wenhui Zhang, Arthur Asuncion, Ming Kin Lai, Michael B. Dillencourt, and Lubomir F. Bic ∗

Donald Bren School of Information & Computer Sciences
University of California, Irvine, CA 92697-3425, USA
{pan,wzhang,aasuncio,mingl,dillenco,bic}@ics.uci.edu

Abstract

We show how a series of transformations can be applied
to incrementally parallelize sequential programs. Our Nav-
igational Programming (NavP) methodology is based on
the principle of self-migrating computations and is truly in-
cremental, in that each step represents a functioning pro-
gram and every intermediate program is an improvement
over its predecessor. The transformations are mechanical
and straightforward to apply. We illustrate our methodol-
ogy in the context of matrix multiplication. Our final stage is
similar to the classical Gentleman’s Algorithm. The NavP
methodology is conducive to new ways of thinking that lead
to ease of programming and high performance.

Keywords: programming methodologies, incremental
parallelization, navigational programming (NavP), pro-
gram transformation, matrix multiplication, Gentleman’s
Algorithm, Cannon’s Algorithm

1. Introduction

In this paper, we show how a series of transformations
can be applied to a sequential algorithm to obtain programs
that represent incremental steps in exploiting parallelism in
the original algorithm. The transformations are provided in
Navigational Programming (NavP).

In NavP, migrating computations are the composing ele-
ments of a distributed parallel program. The code transfor-
mations in NavP – distributing the data and inserting cor-
responding navigational commands, pipelining, and phase
shifting – can be used to incrementally turn a sequential
program to a distributed sequential computing (DSC) pro-
gram, and later to a distributed parallel computing (DPC)
program. These transformations can be applied repeatedly,
or in a hierarchical fashion. The benefits of the NavP incre-
mental parallelization include: (1) Every program is a result

∗The authors gratefully acknowledge the support of The U.S. Depart-
ment of Education GAANN Fellowship.

of applying the mechanics of one of the transformations and
is a natural and incremental step from its predecessor. As
a result, no abrupt change in code will happen between any
consecutive steps; (2) Every intermediate program is an im-
provement from its predecessor. If program development
is limited by time or resources, any one of the intermediate
programs can be taken as production code; (3) The transfor-
mations are highly mechanical and straightforward to use,
and yet, as illustrated here, the resulting parallel programs
can be elegant and efficient. The NavP methodology is con-
ducive to different ways of thinking that lead to ease of pro-
gramming and high performance.

We will briefly describe the NavP methodology in Sec-
tion 2 and apply NavP to the classical problem of ma-
trix multiplication in Section 3. The well-known message-
passing solution to the same problem, i.e., Gentleman’s Al-
gorithm, is presented in Section 4. Section 5 contains per-
formance data, followed by a brief comparison of the two
implementations. Our final section includes a brief survey
and comparison of some competing approaches.

2. Navigational programming

Navigational Programming (NavP) is a methodology
for distributed parallel programming based on the use of
self-migrating computations. In NavP code, a programmer
inserts navigational commands, i.e., hop() statements, to
migrate computation locus in order to access remotely
distributed data and spread out computations. Small data
is carried by the moving computation in “agent variables,”
which are private to a computation thread and available to
the thread wherever it migrates. Large data that stays on a
computer is held in “node variables” that are resident on
a particular node and do not move. The cost of a hop()
is essentially the cost of moving the data stored in agent
variables plus a small amount of state data; in particular,
although the state of the computation is moved on each
hop, the code is not moved. The synchronization among
different migrating computations is done through “events”
(signalEvent() and waitEvent()). A programmer can

PE0

space

time

(a)

time

PE0 PE1 PE2

0

1

2

space

(b)

time

PE0 PE1 PE2

00

01

02

10

11

12

20

21

22

space

(c)

time

PE0 PE1 PE2

10

20

1100

21

22

02

01 12

space

(d)

Figure 1. The code transformations in NavP. (a) Sequential. (b) DSC. (c) Pipelining. (d) Phase shifting.

“inject,” or spawn, a migrating thread at command line.
The injection of a thread can also be done by another
thread, called a “spawner.” All injections happen locally
(i.e., a thread can spawn another thread only on the node
on which it currently resides). Details of the underly-
ing system of NavP, MESSENGERS, can be found online
at http://www.ics.uci.edu/˜ bic/messengers.

NavP provides a different view of distributed compu-
tation from the classical SPMD (Single Program Multiple
Data) view [1]. The SPMD view describes distributed com-
putations at stationary locations, while the NavP view de-
scribes a computation following the movement of its locus.
This different view changes the way distributed parallel pro-
grams are composed and provides some new benefits.

The three transformations under the NavP view are de-
picted in Figure 1. The arrows indicate hop() operations.
The basic idea behind the transformations is to spread out
computations using self-migrating computation threads as
soon as possible without violating any dependency condi-
tions. (1) DSC Transformation: Large data is distributed
among the PEs (processing elements), and hop() statements
are inserted into the sequential code in order for the com-
putation to “chase” large data while carrying small data.
The DSC Transformation is schematically depicted using
Figures 1(a) and (b). The resulting program performs dis-
tributed sequential computing. The immediate benefit of
DSC is that, with a small amount of work, a sequential pro-
gram can efficiently solve large problems that cannot fit in
the main memory of one computer. By using a network of
workstations, the DSC program removes paging overhead
by trading it against a modest amount of network commu-
nication [2]. DSC also serves as the starting point of parallel
program development in NavP. (2) Pipelining Transforma-

tion: This transformation is depicted using Figures 1(b) and
(c). The basic idea is to overlap the execution of multiple
DSC threads, staggering their starting times. Synchroniza-
tion may be necessary to ensure that the data dependencies
among the DSC threads are not violated. (3) Phase-shifting
Transformation: Sometimes the dependency among dif-
ferent computations allows different DSC threads to enter
the pipeline from different PEs. In these situations, we can
phase shift the DSC threads to achieve full parallelism, as
depicted in Figures 1(c) and (d).

The NavP transformations can be systematically applied
repeatedly or hierarchically in different dimensions of a net-
work of PEs, as will be shown with matrix multiplication
later in this paper. At each step, we have a fully functional
implementation that is an improvement of the previous step.
The result of the final step has a resemblance to the classical
Gentleman’s Algorithm, but there are important differences
as described briefly in Section 5.

3. Incremental parallelization of matrix multi-
plication

Matrix multiplication is a fundamental operation of
many numerical algorithms. We show how the transforma-
tions of Section 2 can be repeatedly applied to incrementally
parallelize matrix multiplication. Pseudocode for sequential
matrix multiplication is listed in Figure 2. Throughout the
paper, we assume N is the order of the square matrices.

It is clear that the computation of each entry of the ma-
trix C is independent of all other entries of C, and therefore
there are N2 updatings that can be done in parallel. Never-
theless, exploiting the abundant parallelism in matrix mul-
tiplication is not as straightforward as one might think. If

2

(1) do i=0,N-1
(2) do j=0,N-1
(3) t = 0.0
(4) do k=0,N-1
(5) t += A(i,k) * B(k,j)
(6) end do
(7) C(i,j) = t
(8) end do
(9) end do

Figure 2. Sequential pseudocode.

(1) doall i=0,N-1
(2) doall j=0,N-1
(3) C(i,j) = 0.0
(4) do k=0,N-1
(5) C(i,j) += A(i,k) * B(k,j)
(6) end do
(7) end doall
(8) end doall

Figure 3. Parallel pseudocode using doall.

we parallelize the two outer loops using the popular doall
notation, as shown in Figure 3, contention could happen as
multiple PEs request the same entries at the same time. On
the other hand, if we cache multiple copies of the same en-
try on the PEs that require it, we have a non-scalable solu-
tion. Gentleman conducted research into the data move-
ment required for matrix multiplication, and his analysis
confirmed that data movement – and not arithmetic oper-
ations – is often the limiting factor in the performance of
algorithms [3, 4].

Throughout this paper, we describe the problem and our
solution at a fine granularity level for simplicity. That is,
we assume N == P, where P is either the number of PEs
in a one-dimensional (1D) processor network or the order
of a two-dimensional (2D) processor network. To extend
our solution to a coarser level, we simply need to take each
and every element (e.g., C01 or A21) as a sub-matrix block,
instead of an entry of the matrix.

3.1. From sequential to DSC

We first apply DSC Transformation to sequential ma-
trix multiplication, as depicted in Figure 4 where we as-
sume N = 3. The essence of this DSC transformation is
to distribute the computation in the j dimension. The PE
network is 1D in which each PE has a unique identifier
HnodeID = 0, 1, ..., N− 1 from west to east. Again, the ar-
rows represent hop() operations. Thick boxes contain node
variables on different machines, and thin boxes carry agent
variables. All PEs are assumed to be fully connected, rather

than being connected as a ring, via a collision-free switch.
This is true for most modern hardware environments, and it
makes the initial staggering (i.e., moving the entries of the
three matrices to the right places before any computation
begins) faster, because each matrix entry can be shipped
to any destination directly instead of having to go stepwise
through a number of intermediate PEs.

C20

B01

B11

B21

C01

C11

C21

B02

B12

B22

C02

C22

C12

A00 A01

A11A10

A21A20 A22

A12

A02

C10

B00

B10

B20

C00

HnodeID: 0 1 2

Figure 4. DSC.

Pseudocode for DSC matrix multiplication is listed in
Figure 5. In the pseudocode hereafter, A and B indicate node
variables, whereas mA and mB represent agent variables. 1

Matrix A is loaded into agent variable mA and carried by the
migrating thread.

In Figure 4, matrix A is initially put on the PE with
HnodeID = 0, and the columns of matrices B and C are dis-
tributed such that B(∗, j) and C(∗, j) are on the PE with
HnodeID = j. In Figure 5, node(j) maps to the PE that
hosts column j of matrices B and C. Every time the thread of
computation hops back to node(0), it will pick up a differ-
ent row of matrix A for the computation of the loop over j.

(1) hop(node(0))
(2) inject(RowCarrier)

(1) RowCarrier
(2) do mi=0,N-1
(3) do mj=0,N-1
(4) hop(node(mj))
(5) if(mj=0) mA(*) = A(mi,*)
(6) t = 0.0
(7) do k=0,N-1
(8) t += mA(k) * B(k)
(9) end do
(10) C(mi) = t
(11) end do
(12) end do
(13) end

Figure 5. Pseudocode for DSC.

1In our NavP programs, we adapt a naming convention of starting an
agent variable’s name with a lowercase m.

3

3.2. DSC pipelining

We apply our Pipelining Transformation to the DSC
code obtained from the previous step. This is depicted in
Figure 6. Now each row of matrix A is assigned to a com-
putation thread, and these threads are injected into the PE
pipeline in turn, and follow each other in the network to
compute the corresponding C entries.

A22

C01

A10

A02A00 A01

B00

B10

B20

C00

C10

C20

B01

B11

B21

C11

C21

B02

B12

B22

C02

C12

C22

A11 A12

A21A20

HnodeID: 0 1 2

Figure 6. DSC with pipelining.

Pseudocode for pipelined DSC matrix multiplication is
listed in Figure 7. The matrix A is initially put on the PE
with HnodeID = 0, and the columns of matrices B and C
are distributed such that B(∗, j) and C(∗, j) are on the PE
with HnodeID = j.

(1) hop(node(0))
(2) do i=0,N-1
(3) inject(RowCarrier(i))
(4) end do

(1) RowCarrier(int mi)
(2) mA(*) = A(mi,*)
(3) do mj=0,N-1
(4) hop(node(mj))
(5) t = 0.0
(6) do k=0,N-1
(7) t += mA(k) * B(k)
(8) end do
(9) C(mi) = t
(10) end do
(11) end

Figure 7. Pseudocode for pipelined DSC.

3.3. From DSC to full DPC

We apply our Phase-shifting Transformation to achieve a
full DPC, as depicted in Figure 8. This is possible because
each row of A, though needed on all three PEs, can start its
computation from any PE.

Pseudocode for phase-shifted DPC matrix multiplication
is listed in Figure 9. Rows of matrix A are carried by the
corresponding agent variables mA.

C01

C11

C21

B02

B12

B22

C02

C12

C22

A21 A22A20 A10 A11 A12 A00 A01 A02

B21

B10

B20

B00
C00

C10

C20

B01

B11

HnodeID: 0 1 2

Figure 8. Full DPC through phase shifting.

In this full DPC implementation, matrix A is initially dis-
tributed such that A(i, ∗) is on the PE with HnodeID = i,
and the columns of matrices B and C are distributed such
that B(∗, j) and C(∗, j) are on the PE with HnodeID = j.

(1) do mi=0,N-1
(2) hop(node(mi))
(3) inject(RowCarrier(mi))
(4) end do

(1) RowCarrier(int mi)
(2) mA(*) = A(*)
(3) do mj=0,N-1
(4) hop(node((N-1-mi+mj)%N))
(5) t = 0.0
(6) do k=0,N-1
(7) t += mA(k) * B(k)
(8) end do
(9) C(mi) = t
(10) end do
(11) end

Figure 9. Pseudocode for phase-shifted DPC.

3.4. DSC in the second dimension

What we have achieved so far (Figure 8) is a 1D DPC
consisting of phase-shifted pipelined computations in which
the rows move through the pipeline. What we will do in the
next three steps is achieve further parallelization by intro-
ducing a second dimension, effectively letting each entry of
each row move through a pipeline.

The first step is to introduce a 2D network in which
each PE has a unique 2D identifier (HnodeID, VnodeID),
where HnodeID = 0, 1, ..., N− 1 from west to east, and
VnodeID = 0, 1, ..., N− 1 from north to south, and apply
DSC Transformation in the second dimension, as depicted
in Figure 10. The essence of this DSC transformation is to
further distribute the computations in the i dimension.

Pseudocode for DSC in the second dimension is listed in
Figure 11. The rows of matrix A and columns of matrix B

4

B01

B21

B11

B02

B12

B22

B00

B10

B20

A10 A11 A12

C00 C01 C02

C21 C22C20

C10 C11 C12

A21 A22A20

A00 A01 A02

2

VnodeID:

HnodeID: 0 1 2

0

1

Figure 10. DSC in the second dimension.

are carried in their corresponding agent variables mA and mB,
respectively. The ColCarriers are there to ship data, i.e.,
the B columns, for the RowCarriers to compute with using
the A rows they carry by themselves. The events are nec-
essary because the consumers, i.e., the RowCarriers, need
to hold on their computations until the producers, i.e., the
ColCarriers, finish putting the columns of B in place.

The matrices are initially distributed, as shown in Fig-
ure 10, such that A(N− 1− l, ∗) and B(∗, l) are on
node(N− 1− l, l), and C(i, j) (initialized to 0) is on
node(i, j), where node(i, j) maps to the PE that hosts en-
try (i, j) of matrix C.

3.5. DSC with pipelining in both dimensions

We apply our Pipelining Transformation in both dimen-
sions, as depicted in Figure 12. Basically, a pair of A and B
entries can move on along their pipelines respectively as
soon as they finish computing and contributing the corre-
sponding C entry. A producer BCarrier needs to make sure
that the B entry produced by its predecessor in the pipeline
is consumed before it puts the B entry it carries in place.
This is the reason for a second event EC(., .).

Pseudocode for DSC with pipelining in both dimensions
is listed in Figure 13. The entries of matrices A and B are
carried in their corresponding agent variables mA and mB,
respectively.

The matrices are initially distributed, as shown in Fig-
ure 12, such that A(N− 1− l, ∗) and B(∗, l) are on
node(N− 1− l, l), and C(i, j) (initialized to 0) is on
node(i, j). An event EC(i, j) is signaled on node(i, j)
for all values of i, j initially.

(1) do ml=0,N-1
(2) hop(node(N-1-ml,ml))
(3) inject(RowCarrier(N-1-ml))
(4) inject(ColCarrier(ml))
(5) end do

(1) RowCarrier(int mi)
(2) mA(*) = A(*)
(3) do mj=0,N-1
(4) hop(node(mi,(N-1-mi+mj)%N)
(5) waitEvent(EP(mi,(N-1-mi+mj)%N))
(6) do k=0,N-1
(7) C += mA(k) * B(k)
(8) end do
(9) end do
(10) end

(1) ColCarrier(int mj)
(2) mB(*) = B(*)
(3) do mi=0,N-1
(4) hop(node((N-1-mj+mi)%N,mj))
(5) B(*) = mB(*)
(6) signalEvent(EP((N-1-mj+mi)%N,mj))
(7) end do
(8) end

Figure 11. Pseudocode for DSC in the 2nd
dimension.

B10

B20

A11

A12

A10

B01

B11

B21

A00

A01

A02

B02

B12

B22

C00 C01 C02

C21 C22C20

C10 C11 C12

A22

A21

A20
B00

0

1

2

HnodeID: 0 1 2

VnodeID:

Figure 12. DSC pipelining in both dimensions.

3.6. Full DPC in both dimensions

We apply our Phase-shifting Transformation in both di-
mensions to achieve full parallelization, as depicted Fig-
ure 14.

Pseudocode for DPC in both dimensions is listed in Fig-
ure 15. The entries of matrices A and B are carried in their

5

(1) do ml=0,N-1
(2) hop(node(N-1-ml,ml))
(3) inject(spawner(ml))
(4) end do

(1) spawner(int ml)
(2) do mk=0,N-1
(3) inject(ACarrier(N-1-ml,mk))
(4) inject(BCarrier(mk,ml))
(5) end do
(6) end

(1) ACarrier(int mi, int mk)
(2) mA=A(mk)
(3) do mj=0,N-1
(4) hop(node(mi,(N-1-mi+mj)%N))
(5) waitEvent(EP(mi,(N-1-mi+mj)%N))
(6) C += mA * B
(7) signalEvent(EC(mi,(N-1-mi+mj)%N))
(8) end do
(9) end

(1) BCarrier(int mk, int mj)
(2) mB=B(mk)
(3) do mi=0,N-1
(4) hop(node((N-1-mj+mi)%N,mj))
(5) waitEvent(EC((N-1-mj+mi)%N,mj))
(6) B = mB
(7) signalEvent(EP((N-1-mj+mi)%N,mj))
(8) end do
(9) end

Figure 13. Pseudocode for DSC pipelining in
both dimensions.

B11

C00 C01 C02

C21 C22C20

C10 C11 C12

A20 A22 A21

B20

B10

B00

B01

B21

B02

B22

B12

A11 A10 A12

A01A02 A00

0

1

2

HnodeID: 0 1 2

VnodeID:

Figure 14. Phase shifting in both dimensions.

corresponding agent variables mA and mB, respectively.
The matrices are initially distributed such that A(i, j),

B(i, j) and C(i, j) (initialized to 0) are on node(i, j).
In the above figures such as Figure 14, each sub-matrix

(1) do mj=0,N-1
(2) hop(node(0,mj))
(3) inject(spawner(mj))
(4) end do

(1) spawner(int mj)
(2) do mi=0,N-1
(3) hop(node(mi,mj))
(4) signalEvent(EC(mi,mj))
(5) inject(ACarrier(mi,mj))
(6) inject(BCarrier(mi,mj))
(7) end do
(8) end

(1) ACarrier(int mi, int mk)
(2) mA = A
(3) do mj=0,N-1
(4) hop(node(mi,(N-1-mi-mk+mj)%N)
(5) waitEvent(EP(mi,(N-1-mi-mk+mj)%N))
(6) C += mA * B
(7) signalEvent(EC(mi,(N-1-mi-mk+mj)%N))
(8) end do
(9) end

(1) BCarrier(int mk, int mj)
(2) mB = B
(3) do mi=0,N-1
(4) hop(node((N-1-mj-mk+mi)%N,mj))
(5) waitEvent(EC((N-1-mj-mk+mi)%N,mj))
(6) B = mB
(7) signalEvent(EP((N-1-mj-mk+mi)%N,mj))
(8) end do
(9) end

Figure 15. Pseudocode for full DPC in both
dimensions.

block, e.g., A10 or C11, is called a “distribution block” in
our implementation, as it is a basic unit of data distribution
on a PE. To achieve better performance from a block algo-
rithm, a further level of matrix decomposition is used [5]. A
distribution block is decomposed into “algorithmic blocks,”
and each algorithmic block of A or B is carried by a migrat-
ing thread (i.e., ACarrier or BCarrier). Our sequential
and MPI (Message Passing Interface) implementations de-
scribed below use algorithmic blocks as well.

4. Gentleman’s Algorithm

Gentleman’s Algorithm [3, 6] is a classical SPMD algo-
rithm for parallel matrix multiplication. The pseudocode is
listed in Figure 16, in which an arrow represents a receive
from a remote PE, which needs to call a send in order
to complete the communication. During initial staggering,
each entry of matrix A will stagger i times to the west,
where i is the entry’s row number, and each entry in ma-
trix B will stagger j times to the north, where j is the entry’s
column number. An entry can be either a single value or a
sub-matrix. Thus, a skewed transformation of matrices A
and B results. Like the NavP pseudocode, our MPI imple-

6

(1) do k=0,N-2
(2) doall node(i,j) where 0<=i,j<=N-1
(3) if i>k then
(4) A ← east(A)
(5) end if
(6) if j>k then
(7) B ← south(B)
(8) end if
(9) end do
(10) end do

(11) doall node(i,j) where 0<=i,j<=N-1
(12) C = A * B
(13) end do
(14) do k=0,N-2
(15) doall node(i,j) where 0<=i,j<=N-1
(16) A ← east(A)
(17) B ← south(B)
(18) C += A * B
(19) end do
(20) end do

Figure 16. Pseudocode for Gentleman’s Alg.

mentation assumes a fully connected network, and matrix
staggering is accomplished in a single step (not shown in
Figure 16) rather than in a series of steps. Throughout the
entirety of Gentleman’s Algorithm, matrix C remains sta-
tionary.

Once the initial staggering completes, matrices A and B
are multiplied and the results are placed in matrix C. For
N − 1 iterations, matrix A shifts its columns one step to the
west and matrix B shifts its rows one step to the north, and A
and B are multiplied with the results added to the C matrix.

In our implementation, non-blocking receives (i.e.,
MPI Irecv()) are used in conjunction with blocking sends
to prevent deadlocking. MPI Wait(), which blocks until the
incoming matrix has been received, assists in providing syn-
chronization between PEs.

As a result of using algorithmic blocks, many blocks are
shifted from a PE to itself during the computation. Instead
of sending an algorithmic block to a PE itself, or copying
an algorithmic block from a local memory, we use pointer
swapping to shift an algorithmic block locally.

5. Performance data

We have implemented parallel matrix multiplication us-
ing both NavP and message passing. The NavP system
used was MESSENGERS (Version 1.2.05 Beta) developed
in Donald Bren School of Information & Computer Sci-
ences, University of California Irvine. The message passing
system used was LAM 7.0.6 from Indiana University [7].
The ScaLAPACK used was version 1.7 from University
of Tennessee, Knoxville and Oak Ridge National Labora-
tory [8]. The C compiler used was GNU gcc-3.2.2, and

the Fortran compiler used was GNU g77-3.2.2. The per-
formance data was obtained from SUN workstations (SUN
Blade 100, CPU: 502 MHz SUNW,UltraSPARC-IIe, OS:
SunOS Release 5.8) with 256MB of main memory, 1GB
of virtual memory, and 100Mbps of Ethernet connection.
These workstations have a shared file system (NFS).

When the working set of a sequential program exceeds
the physical memory on a PE, thrashing happens and the
performance degrades. In a distributed program, however,
the data of a sub-problem may fit in the memory of a ma-
chine completely even if the entire problem is too large. In
order to obtain fair speedup numbers, we calculate sequen-
tial timing for large problems using least squared curve fit-
ting with a polynomial of order 3 using performance num-
bers collected with small problems.

Table 1 lists the performance data for NavP and ScaLA-
PACK on a 1D PE network of three machines. It can be seen
that the performance improves as we go from NavP DSC to
NavP pipelining and then to NavP phase shifting. For small
problems, NavP 1D DSC is only marginally slower than
the corresponding sequential execution, but as problem size
grows it becomes faster (consider data from actual runs but
not from curve fitting). Table 2 indicates that with several
networked computers DSC performs almost as fast as the
sequential program running with enough main memory, and
it is significantly faster than the sequential program paging
using virtual memory. With N = 9216, the total memory us-
age is about 1GB, but our machines each have only 256MB
of main memory.

Tables 3 and 4 list the performance data for MPI, NavP,
and ScaLAPACK on a 2D PE network of nine machines.
Again, performance improves as we hierarchically apply
the three NavP transformations in the second dimension.

In both 1D and 2D cases, our DSC and pipelining pro-
grams achieve high performance. This can be attributed
to the use of algorithmic blocks. The RowCarriers or
ACarriers, each of which responsible for the computation
of a row of algorithmic blocks or an algorithmic block, can
spread out their computations to the entire network earlier
than if a full distribution block on a PE has to be computed
before these carriers can hop out.

The MPI implementation used for the comparison was
Gentleman’s Algorithm modified to use block partitioning
of matrices, and with pointer swapping used to avoid unnec-
essary local data copying. ScaLAPACK uses a logical LCM
hybrid algorithmic blocking technique [5], so the block or-
ders in the tables do not apply to the ScaLAPACK numbers.

The performance data indicates that the NavP implemen-
tation achieves a higher speedup than the MPI implementa-
tion. Some differences between these two implementations
are discussed briefly below. More details can be found in
our full-length technical report [9].

1. Communication. We use block algorithms for bet-

7

Table 1. Performance on 3 PEs
Sequential NavP (1D DSC) NavP (1D pipeline) NavP (1D phase) ScaLAPACK(#)

Matrix
order

Block
order

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

1536 128 65.44 1.00 67.22 0.97 27.72 2.36 24.55 2.67 26.80 2.44
2304 128 219.71 1.00 229.45 0.96 91.03 2.41 81.23 2.70 82.83 2.65
3072 128 520.30 1.00 543.91 0.96 205.87 2.53 189.50 2.75 211.45 2.46
4608 128 1934.73 (1745.94*) 1.00 1809.73 0.96 688.18 2.54 653.64 2.67 767.91 2.27
5376 128 3033.92 (2735.69*) 1.00 2926.24 0.93 1151.07 2.38 990.05 2.76 1173.46 2.33
6144 256 5055.93 (4268.16*) 1.00 4697.32 0.91 1811.77 2.36 1554.99 2.74 1984.18 2.15

(*) Obtained from least squared curve fitting and used in calculating speedup.
(#) ScaLAPACK uses a logical LCM hybrid algorithmic blocking technique, not controlled by users [5].

Table 2. Performance on 8 PEs
Sequential NavP (1D DSC)

Matrix
order

Block
order

Time
(s)

Speed
up

Time
(s)

Speed
up

9216 128 36534.49 (13921.50*) 1.00 14959.42 0.93
(*) Obtained from least squared curve fitting and used in calculating speedup.

ter cache and communication performance. The algo-
rithmic blocks of C on a PE can be updated in differ-
ent orders. In the case of NavP, the order is not pre-
defined and the CPU cycles are thus efficiently utilized
in computations as the data they need arrives. An ef-
ficient run-time task scheduling handled by the queu-
ing mechanisms built into the MESSENGERS daemon
is provided to the NavP programmers. As a result,
NavP programmers only need to concern themselves
with the two event handling commands as the interface
to the queuing mechanisms that are otherwise hidden
at the system level. It is the NavP view that allows us
to focus on describing the application level computa-
tions following their movement and to factor out the
functionality associated with scheduling – code that
describes behaviors at fixed locations. In MPI, the sit-
uation is quite different. The straightforward way to
program the block implementation is to have a loop
over all the algorithmic blocks of C on a PE. The loop
introduces an artificial sequential order to the commu-
nications and computations even though they are actu-
ally independent of each other and hence may result in
slower performance. Possible ways to remove the arti-
ficial sequencing are proposed [9], but they all require
significantly more work in one way or another.

2. Cache performance. The NavP and the sequential
programs have a similar cache performance because
in both cases during the execution there is an algorith-
mic block (of C for the sequential program and of A for
the NavP program, respectively) that would stay in the
cache for the duration of computation using other two
algorithmic blocks. In contrast, in the block-oriented
MPI program, triplets of A B C blocks are frequently
fresh in the cache, which leads to less efficient cache
use. A simple analysis shows that this cache perfor-

mance of NavP can account for as much as a 4% im-
provement over MPI [9].

3. Initial staggering. The NavP program uses “reverse
staggering” for matrices A and B. That is, the “chain”
of a row or a column is both shifted and reverse-
ordered. In contrast, both Gentleman’s Algorithm and
Cannon’s Algorithm [10, 11] use “forward stagger-
ing,” which only shifts the positions of the entries with-
out reversing the order. It is shown in [9] that reverse
staggering never requires more than two communica-
tion phases, while forward staggering often requires
three communication phases.

It would be possible to improve the performance of the
MPI code by subtle fine-tuning at a cost of considerably
more programming effort. Nevertheless, the data makes it
clear that the NavP program is faster than a straightforward
implementation of Gentleman’s Algorithm and competitive
with a highly tuned version.

6. Final remarks

In incremental parallelization, a programmer uses a se-
quential code as the starting point and exploits and intro-
duces parallelism step by step incrementally, until satisfac-
tory performance is achieved or a time/resource constraint
is reached. Oftentimes, programmers begin with the per-
formance critical “hot spots” in a program and gradually
parallelize other parts of the program.

Shared-memory programming is believed to be more
programmable and more amenable to incremental paral-
lelization [12]. The reason is that data need not be dis-
tributed among the processors (in the case of DSM (Dis-
tributed Shared Memory) [13] or HPF (High Performance
Fortran) [14], data is distributed but a logical single ad-
dress space is provided). Shared-memory programs are
similar to the familiar sequential original codes, and there-
fore the transition is easier for programmers. Some pro-
gramming languages (e.g., HPF or UPC(Unified Paral-
lel C) [15]) provide special language constructs such as
doall or forall, so ideally parallelization is as simple as

8

Table 3. Performance on 2× 2 PEs
Sequential MPI (Gentleman) NavP (2D DSC) NavP (2D pipeline) NavP (2D phase) ScaLAPACK(#)

Matrix
order

Block
order

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

1024 128 19.49 1.00 6.02 3.24 7.63 2.55 5.88 3.31 5.54 3.52 5.23 3.73
2048 128 158.51 1.00 50.99 3.11 50.59 3.13 42.61 3.72 41.54 3.82 45.53 3.48
3072 128 520.30 1.00 157.53 3.30 158.06 3.29 144.09 3.61 137.39 3.79 156.27 3.33
4096 128 1281.58 (1238.21*) 1.00 367.04 3.37 362.73 3.41 328.98 3.76 321.70 3.85 417.83 2.96
5120 128 2727.86 (2373.32*) 1.00 733.91 3.23 792.23 3.00 757.67 3.13 624.87 3.80 907.16 2.62

(*) Obtained from least squared curve fitting and used in calculating speedup.
(#) ScaLAPACK uses a logical LCM hybrid algorithmic blocking technique, not controlled by users [5].

Table 4. Performance on 3× 3 PEs
Sequential MPI (Gentleman) NavP (2D DSC) NavP (2D pipeline) NavP (2D phase) ScaLAPACK(#)

Matrix
order

Block
order

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

1536 128 65.44 1.00 10.97 5.97 13.66 4.79 9.18 7.13 8.21 7.97 8.08 8.10
2304 128 219.71 1.00 29.95 7.34 39.53 5.56 29.93 7.34 26.74 8.22 29.39 7.48
3072 128 520.30 1.00 82.25 6.33 86.52 6.01 66.94 7.77 62.36 8.34 70.92 7.34
4608 128 1934.73 (1745.94*) 1.00 241.92 7.22 268.41 6.50 220.28 7.93 205.68 8.49 255.87 6.82
5376 128 3033.92 (2735.69*) 1.00 437.27 6.26 421.78 6.49 360.77 7.58 323.67 8.45 398.50 6.86
6144 256 5055.93 (4268.16*) 1.00 637.79 6.69 745.18 5.73 584.85 7.30 510.29 8.36 635.36 6.72

(*) Obtained from least squared curve fitting and used in calculating speedup.
(#) ScaLAPACK uses a logical LCM hybrid algorithmic blocking technique, not controlled by users [5].

changing do loops to doall loops. In OpenMP [16], par-
allel directives (e.g., !$ OMP PARALLEL) can be used to par-
allelize any program segment (called “parallel region”) that
the programmer chooses. Unfortunately, although changing
do’s to doall’s or using OpenMP parallel regions in ma-
trix multiplication does exploit parallelism in the algorithm,
both of these methods will cause communication contention
for a “zero-inventory” implementation (see Section 3).

For better performance, programmers must take care
of data distribution explicitly (e.g., HPF or UPC provides
such mechanism), and hence the advantage of not needing
explicit data distribution on shared-memory is weakened.
OpenMP is targeted mainly at SMP (Symmetric MultiPro-
cessor) architectures, and therefore does not provide the op-
portunity for its programmers to specify data distribution.
Consequently, the OpenMP implementations on distributed
memory (with an underlying DSM system such as Tread-
Marks [17]) have seen less satisfying performance. The re-
ported speedups on SMP clusters for OpenMP are within 7-
30% of those of MPI implementations [18].

Message passing programming is less amenable to incre-
mental parallelization. Transforming a sequential program
into a message-passing one is an abrupt break, since data
must be distributed and code structure is often dramatically
changed. This is seen in the matrix multiplication example
– one either gets no parallelism at all with the sequential
code, or one gets all parallelism with Gentleman’s Algo-
rithm. Going directly from the sequential code to a parallel
algorithm such as Gentleman’s Algorithm requires consid-
erable ingenuity. Nevertheless, message passing program-
ming usually leads to good performance. This phenomenon
can be attributed to the message passing programmers’ ex-

plicit control of data distribution and careful avoidance of
communication contention and extra data movement.

In NavP, the DSC Transformation involves data distri-
bution and insertion of migration statements (i.e., hop()).
The other two code transformations exploit parallelism by
decomposing the long DSC threads and managing prop-
erly the synchronization among the shorter ones. The pro-
grammability of NavP is similar to that of HPF in that they
both require explicit control of data distribution and explicit
synchronization (through the use of barriers, events, critical
regions, etc. in HPF, and events in NavP). Similar to HPF,
synchronization errors are more likely to happen in NavP
than in message passing. Unlike HPF, NavP requires its
programmers to handle details in communication by using
agent variables to carry data around. As a result, the NavP
programmers know exactly how much is communicated to
where at what time. NavP composes parallel code from
shorter DSC threads, and the parallel code is structurally
the same as the original sequential code. This property of
NavP is referred to as Algorithmic Integrity [2].

Our NavP matrix multiplication implementation is faster
than our MPI code. This is mainly because the NavP code
successfully hides some of the communication overhead us-
ing an efficient but transparent run-time scheduling. This
task scheduling functionality is factored out from the appli-
cation code under the NavP view and put into the MESSEN-
GERS daemon. Although it is entirely possible to achieve
better task scheduling in the MPI code, with the MPI envi-
ronment available today, the code that implements this will
have to be developed for each and every application and
will be interleaved with the application code. In this sense,
message passing is harder to use than NavP.

9

A hybrid use of MPI and OpenMP [19], with OpenMP’s
multi-threading capability used for the computation on a
computer node, is another way of introducing efficient run-
time scheduling. Traditionally, multi-threading and mes-
sage passing are significantly different methods rooted in
two different architectures – shared-memory and message-
passing architectures. Recent years have seen a trend
of merging these two different styles of parallel pro-
gramming in order to efficiently program the next gen-
eration supercomputers: cluster of multi-processor sys-
tems. Some examples include a thread-compliant imple-
mentation of MPI supporting MPI THREAD MULTIPLE in
LAM/Open MPI [20] and a hybrid use of MPI and OpenMP.
NavP is a uniform methodology that conveniently provides
the combined functionalities of message passing and multi-
threading, using navigational commands and synchroniza-
tion commands.

Our NavP methodology uses highly mechanical and in-
cremental steps to guide the programmers to achieve elegant
implementations with superior performance. The NavP
transformations are at least partially automatable. Building
tools to automate them is part of our future work.

Acknowledgements

The authors wish to thank Koji Noguchi for his great
help with MESSENGERS and valuable discussions.

References

[1] L. Pan, L. F. Bic, M. B. Dillencourt, and M. K. Lai, “NavP
versus SPMD: Two views of distributed computation,” in
Proceedings of the Fifteenth IASTED International Confer-
ence on Parallel and Distributed Computing and Systems
(PDCS 2003), T. Gonzalez, Ed., vol. 2, Algorithms. Ana-
heim, Calif.: ACTA Press, Nov. 2003, pp. 666–673.

[2] L. Pan, L. F. Bic, and M. B. Dillencourt, “Distributed se-
quential computing using mobile code: Moving computa-
tion to data,” in Proceedings of the 2001 International Con-
ference on Parallel Processing (ICPP 2001), L. M. Ni and
M. Valero, Eds. Los Alamitos, Calif.: IEEE Computer So-
ciety, Sept. 2001, pp. 77–84.

[3] W. M. Gentleman, “Some complexity results for matrix
computations on parallel computers,” Journal of the ACM,
vol. 25, no. 1, pp. 112–115, Jan. 1978.

[4] J. J. Modi, Parallel algorithms and matrix computation.
Oxford: Clarendon Press, 1988.

[5] A. P. Petitet and J. J. Dongarra, “Algorithmic redistribution
methods for block-cyclic decompositions,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 10, no. 12,
pp. 1201–1216, 1999.

[6] M. J. Quinn, Parallel computing theory and practice.
McGraw-Hill, 1994.

[7] G. Burns, R. Daoud, and J. Vaigl, “LAM: An Open Cluster
Environment for MPI,” in Proceedings of Supercomputing
Symposium, 1994, pp. 379–386.

[8] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLA-
PACK Users’ Guide. Philadelphia, Pa.: Society for Indus-
trial and Applied Mathematics, 1997.

[9] L. Pan, W. Zhang, A. Asuncion, M. K. Lai, M. B. Dillen-
court, and L. F. Bic, “Incremental parallelization using navi-
gational programming: A case study,” University of Califor-
nia, Irvine, Irvine, CA, School of Information & Computer
Sciences Technical Report TR# 05-04, Mar. 2005.

[10] L. E. Cannon, “A cellular computer to implement the
Kalman Filter Algorithm,” Ph.D. dissertation, Montana
State University, 1969.

[11] N. Petkov, Systolic Parallel Processing. Amsterdam,
North-Holland: Elsevier Science Publishers, 1993.

[12] C. Leopold, Parallel and Distributed Computing: A Survey
of Models, Paradigms, and Approaches. New York: John
Wiley & Sons, 2001.

[13] J. Protic, M. Tomasevic, and V. Milutinovic, Eds., Dis-
tributed Shared Memory: Concepts and Systems. Los
Alamitos, CA: IEEE Computer Society, 1998.

[14] R. S. Schreiber, “An introduction to HPF,” Lecture Notes in
Computer Science, vol. 1132, pp. 27–44, 1996.

[15] T. El-Ghazawi and S. Chauvin, “UPC benchmarking issues,”
in Proceedings of the 2001 International Conference on Par-
allel Processing (ICPP 2001), L. M. Ni and M. Valero, Eds.
Los Alamitos, Calif.: IEEE Computer Society, Sept. 2001,
pp. 365–372.

[16] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald,
and R. Menon, Parallel Programming in OpenMP. San
Francisco, Calif.: Morgan Kaufmann Publishers, 2001.

[17] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel, “TreadMarks:
Shared memory computing on networks of workstations,”
IEEE Computer, vol. 29, no. 2, pp. 18–28, Feb. 1996.

[18] Y. C. Hu, H. Lu, A. L. Cox, and W. Zwaenepoel, “OpenMP
for networks of SMPs,” in Proceedings IPPS/SPDP. IEEE
Computer Society Press, 1999, pp. 302–310.

[19] L. Smith and M. Bull, “Development of mixed mode MPI/
OpenMP applications,” Scientific Programming, vol. 9, no.
2–3, pp. 83–98, Spring–Summer 2001.

[20] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Don-
garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,
and T. S. Woodall, “Open MPI: Goals, concept, and design
of a next generation MPI implementation,” in Proceedings,
11th European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, Sept. 2004.

10

